

Technical Reference

	Architecture
	Modularity

	Underlying technologies

	Request Handling

	Classification of Content
	Text content

	Resource content

	Translation Memories

	Using TMs
	Confidence levels

	Page modifiers

	Client-Side Translator
	Operations
	Overview

	Setup

	Integrators’ Guide
	Elements

	Interop
	Example

Architecture

Modularity

The Translation Proxy is based over Google’s AppEngine infrastructure, split into frontend and backend modules. Each module encompasses variable numbers of instances, scaling automatically in response to demand. Modules are versioned and deployed separately, and can be switched independently, if needed.

Frontend instances serve requests from visitors to translated pages (in addition to serving the Dashboard and providing user-facing functionality).Requests are routed to the Proxy Application via the CNAME records created during the publishing process.

Backend modules are responsible for billing, statistics aggregation, and handling potentially long-running tasks, like XML import-export. Backend instances are not directly addressable, and provide no user-facing interaction.

Underlying technologies

Immediately underlying the Proxy Application is the AppEngine infrastructure, responsible for rapidly scaling the deployed application. AppEngine also handles communication with the Google Cloud Datastore, a high-replication NoSQL database acting as the main persistent storage; as well as the Google Cloud Storage system, an also-distributed long-term storage. Logging is provided by Google Cloud Logging, while BigQuery provides rapid search ability in the saved logs on request.

[image: _images/appengine-architecture.png]AppEngine Architecture

Encompassing the entire application is the Google EdgeCache network, proactively caching content in various data centers located regionally to the request originator. Any content bearing the appropriate headers (Cache-control:public; max-age=/\d+/ and Pragma:public - both are required) is cached by the EdgeCache for as long as needed, for requests originating in the same geographic area.

The current instance of the Proxy Application is hosted in the US central region, as a multi-tenant application (serving multiple users, but dedicated to proxying). However, single-tenant deployments (dedicated to a single user), special deployments to other regions (EU or Asia), or internal systems fulfilling the AppScale system requirements can be discussed on a per-request basis.

Request Handling

In the Translation Proxy, frontend instances are responsible for serving translated pages. Thanks to AppEngine’s quick-reaction scaling, the number of frontend instances aggressively follows (and somewhat predicts) demand, keeping latency low. The general life cycle of a proxy request can be described as follows.

	The incoming requests, based on the domain name, reach the Google Cloud (rerouted via DNS record CNAME, pointing to ghs.domainverify.net.

	Based on the domain name and the deployed Proxy application, AppEngine decides that this specific request should be routed to the Proxy AppEngine deployment.

	The request reaches the Proxy Application internally; the application does a lookup against the domain for the associated project. There are special domain names, and the final serving domain, for which caching is activated.

	Based on the URL, the Proxy application determines the matching Page in the Proxy database. The database has a list of segments, pointing to our internal Translation Memory (TM). We retrieve all these existing Database entries, including the translations for the given target language.

	The Proxy application processes the incoming URL request, and transforms it to point back to the original site’s domain. Then, the source content of the translation is sourced, according to cache settings in effect on the project.

	If source caching is disabled, the application issues a request, and retrieves the result from the original web server, which is hosting the original website language.

	If source caching is enabled, a local copy (a previously stored version of the source HTML) is used, instead of issuing a request to the original web server.

	Depending on the Content-type of the response, the appropriate Translator is selected, and the response is passed to an instance of the Translator as a document. The behavior of the Translator can be affected by cache settings as well.

	If binary caching is disabled, the application then builds the Document Object Model (DOM) tree of the result, finally iterates through all the block level elements, and matches them against the segments loaded from the database. If there’s a match, we replace the text with the translation. If not, we ‘report’ it as a missing translation.

	If binary caching is enabled and the hash of the source HTML matches the one stored in the cache, a previously prepared and stored translated HTML is served.

	If binary caching and keep cache are both enabled, and the hash of the source HTML doesn’t match the one stored in the cache, the proxy translates the page using the TM. If the number of translated segments is higher than the previously prepared and stored translated HTML, the new version is served; otherwise the old one. (Keep cache can be thought of as a “poor man’s staging server”).

	Hyperlinks in the translated content are altered by the LinkMapper to point to the proxied domain instead of the original. This affects all href or src attributes in the document equally, unless the element is given the __ptNoRemap class. At this point, resources may be replaced by their localized counterparts on a string-replacement basis.

	The application serializes the translated DOM tree, and writes it to the response object.

	Before final transmission takes place, the Proxy may rewrite or add any additional headers, such as Cache-control or Pragma.

	Finally, the Proxy serves the document as an HTML5 stream, as a response to the original request. AppEngine must close the connection once the response is transmitted, so proxying streaming services is not possible in this fashion!

Classification of Content

The Translation Proxy distinguishes two main types of content: text content and resources. The key difference is that text content may be translated, while resource content is treated opaquely, and only references can be replaced as resource localization. It is possible to reclassify entities from Resource to Text, but not the other way around.

During proxying, resources are enumerated, and any already-localized references are replaced, while text content is passed to an applicable Translator implementation for segmented translation.

Text content

By default, the Proxy only handles responses with Content-Type:text/html as translatable. To process HTML content, the source response’s content is parsed into a Document, then text content is extracted from the DOM-nodes. Additionally, various attribute values are processed (without additional configuration, title and alt).

The content is then transformed into SourceEntry entities server-side. Each block element comprises one source entry, with a globally unique key. If segmentation is enabled on the project, the appropriate rules are loaded (either using the default segmentation or by loading the custom SRX file attached to the project), and the content is segmented accordingly, with the resulting token bounds stored in the SourceEntry.Along with the SourceEntry entities, the corresponding TargetEntry and SourceEntryTarget entities are created. TargetEntry entities, as the name suggests, hold the translations; SourceEntryTargets act as the bridge between the two, and hold the segment status indicators for both.

The content of source entries is analyzed in the context of the project, and statistics are computed. These statistics include the amount of repeated content at different confidence levels based on the similarity of the segment - The Translation Proxy differentiates five levels of similarity:

	102%: Strong contextual matches: every segment in the block level element (~paragraph) is a 101% match, where all the tags are identical. These matches do not result in the creation of new SourceEntry entities, thus changes in one place are propagated instantly to all occurrences.

	101%: Contextual matches: both tags in the segment, and contexts (segments immediately before and after) match.

	100%: Regular matches: the segment is repeated exactly, including all tags.

	99%: Strong fuzzy matches: tags from the ends are stripped out, words lowercased, numbers ignored.

	98%: Weak fuzzy matches: all tags are stripped out (may have to be adjusted manually afterwards!), words lowercased, numbers ignored. If the Proxy cannot match the tags between the translation and the source due to excessive differences, all tags are placed at the end of the segment, requiring manual review!

These classifications are reused during memory-powered pre-translation in order to select the best applicable translation or to propagate existing translations.

Resource content

By default, any content with content types other than text/html are treated as a resource, and is not a candidate for translation, only replacement en bloc. This mainly includes application/javascript, text/xml, and various image/* content types. Every resource can be given different replacements per target language, and if required, certain resources (application/javascript and text/xml) can be made translatable after pre-configuration is done. In this case, instead of references being replaced, the appropriate Translator will be instantiated and the content passed to it. This can enable partial or complete translation of dynamic content transmitted as JSON or XML.

Translation Memories

The Translation Proxy can be configured to maintain and leverage internal translation memories. These memories can contain more than one target locale allowing leveraging them for any pair of locales contained within.

As opposed to project dictionaries, translation memories are keyed to the user creating them, and can be assigned to any project the user has Backup Owner privileges or higher.Any project can contain an arbitrary number of memories, but one must always be designated the default: only this memory will be utilized when segments are being written; while pre-translation and suggestions are fed from all memories assigned to the project with applicable locale configurations.

Using TMs

Translation memories are initialized empty, and must be first configured with locales. After the target locales are defined, the memory can be populated. There are three ways a segment can be injected into the memory:

	TMX-import: The Proxy can digest a standard TMX (Translation Memory eXchange) file and populate a designated memory based on its contents. The memory must be configured with at least one of the target locales of the TMX file. Duplicate segments are either merged (if for different locales) or discarded during import.

	Project population: The Proxy can populate the memory from the project it is currently assigned to. The memory must be configured with at least one of the project’s target locales for this to work. If there are several locales assigned to the memory, the UI will treat them as a set, and offer the intersection of the memory and the project’s locales as the default. This set can be further restricted by removing locales from the population task before committing it. This action is logged in the project’s Audit Log.

	Individual Injection: If a memory is assigned to the project with at least one locale present on both, it will be available on the Workbench for use. Confirming one or more segments will trigger the saveToMemory action, injecting the segment in its current form into the memory.

Memories are used for two tasks on the UI:

	Pre-translation tasks can leverage any memories assigned to the project, provided the memory is configured with the correct locale. This applies to user-triggered Pre-translation, as well as Automatic Pre-translation triggered by new content. Only content with confidence levels above the user-configured threshold will be used, matches with lower percentages are discarded.

	The Workbench automatically leverages any memories with the appropriate locales on segment selection. Matches are displayed in the Suggestions tab of the sidebar, along with their match percentages. Additionally, all memories on the project with the applicable target segments can be queried at will by entering a search term.

Confidence levels

The Proxy differentiates five levels of similarity between individual segments/entries (see here). Memory application yields the best results between 101% and 99% - 98% matches disregard tagging, and may need manual adjustment. However, searching below 98% is also possible, using the Google Search API, but these matches should be used with caution, as there is no guarantee regarding their accuracy due to the Search API’s word stemming.

Page modifiers

Due to the way the Proxy Application operates, it becomes fairly easy to modify the pages as they are being served. Because the datastream must pass through the proxy to have the translation embedded, the Proxy Application can insert JavaScript modifiers, modify style sheets, and even embed entire pages that do not exist on the original.

	CSS Editor: the Proxy Application can be used to insert locale-specific CSS rules into the site being served. The rules are inserted as the last element of the head on every page served through the proxy. The most common use of this feature is to alter the writing direction for non-Latin scripts, such as Arabic.

	JavaScript Editor: the JavaScript edited here is inserted into the head element of every page being served through the Proxy Application. As the last element of the head, it has access to any global variables added by scripts before it.

	Content Override: the Proxy Application can create a “virtual” page in the site or override an existing one with custom code. For any requests to an overridden page, the corresponding remote server request is not sent, and the override contents are used as the basis of the translation. The source is not required to be HTML, custom content-types can be entered, along with customized cache headers, and status codes (HTTP status codes are restricted to those permitted by the Java Servlet class [https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletResponse.html]!) - note that the 300-family of status codes requires the Location header to be defined as well.

Both the CSS and JavaScript injectors can use already-existing files for injection instead of copied content. The injected files must be handled by the project in some way (either by being in the project domain, or in the domain of a linked project), or be created by a content override. The order of definition for these entries matters, as they will be inserted into the document in the order they are displayed on the UI, which may cause dependency or concurrency issues!

Client-Side Translator

Operations

Overview

The Client-Side Translator, codenamed CREST, is an alternative publishing mode. Instead of operating in proxy mode, the system generates a Javascript stub that needs to be referenced in the site, and it will translate the page in real time using a dictionary downloaded from the cloud service. Language choice is persisted in the browser’s Local Storage, enabling automatic translation of any page in the site instantly on landing.

Setup

Content is collected and translated the same way as normal. Once publishing is needed, content is exported by selecting the Client-side translation file format, then publishing the latest export (or the one selected for production) from the Previous Exports screen and clicking the context menu.

The translation loader script can be inserted with a one-liner script element, which is available from the Global Settings screen of the Publish section in the sidebar. The website owner needs to insert this script element into pages requiring translation.Once complete, the translations can be requested by adding a query parameter to the URL, with the name __ptLanguage and the chosen locale as the value (for example https://example.com/path/to/page?__ptLanguage=ja-JP).

Integrators’ Guide

Elements

CREST is controlled by the loader script, inserted into every page requiring translation. The script element should be inserted as high in the head as possible in order to begin translation at the earliest possible point.The loader script has a number of query parameters that may be used to manipulate its operation. Any number of these can be combined to customize the loader’s behavior from the default settings (existence of said defaults also means none of these parameters are mandatory to supply).

	languageParameter: This parameter can be used to change the language selector key from its default of __ptLanguage.

	storageParameter: This parameter can be used to change the LOcalSTorage key used to store a previous selection from its default of ptLanguage.

	noXDefault: if set to true, suppress placing an x-default link element in the head if a translated langauge is loaded. This may have SEO implications!

	rewriteUrl: if set to true, use history.replaceState to rewrite the URL shown to the user so that it always displays the selected language.

	scriptUrlIsBase: if set to true, the loader will search for the translator script based on its own URL. CAUTION: This is not supported under Internet Explorer!

	disableSelector: if set to true, the stub will not inject its own language selector in the sidebar. In this case, it is up to the website to provide links to the various language versions.

Language selection is possible via the sidebar inserted on the right by default, or custom a elements that manipulate the value of the __ptLanguage query parameter. Note that once a language is selected, the choice is persisted into the browser Local Storage, so further links need not be annotated with the query to maintain translation.

On selecting a language, the loader script will insert a new script element referencing the exported dictionary. This download the translations necessary for display and the translator algorithm that processes the available DOM to replace content with the available translations.The translator will also attach a MutationObserver to the document being displayed that allows it to react to DOM manipulation or newly-appearing elements in real time.

Interop

In order to provide a seamless user experience, CREST exposes a number of events at key points in the process that allow the containing page to react to the translation process and take action to enhance the experience. The following events are dispatched at various points:

	crestDictionaryLoadingStart: Dispatched when a language is selected and download of the corresponding dictionary begins. As the dictionary can be sizeable, this event can be used to display a notification to the visitor advising them that the language is about to change.

	crestDictionaryLoadingEnd: Dispatched on completion of the dictionary download. Firing this event means translations are available, and they will be applied to the DOM momentarily. If a notification was displayed on download start, it should be removed on this event.

	crestDocumentTranslationStart: Dispatched when the initial translation of the document begins. Firing this event means translations are currently being applied to the entire page, and the displayed language is about to change. In case translation takes significant time, the user may benefit from an overlay or other message notifying them of the process and that the displayed language will change soon.

	crestDocumentTranslationEnd: Dispatched when the initial translation of the DOM is complete, and all available content has been replaced. At this point, the page is translated to the best of CREST’s abilities, and if an overlay or notification was displayed, it should be removed.

	crestMutationTranslationStart: Dispatched when a mutation of the DOM is detected by the attached observer and translation of the new/changed elements begins. This event is unique in that it includes a payload, an array of the MutationRecords that are being processed. These include information about the element name, DOM path, and other data that may be used by the page to react to changes.

	crestMutationTranslationEnd: Dispatched when the mutation observer completes its run and designates all mutated elements translated. If a notification was displayed on the preceding event, it should be removed now.

Example

<script type="application/javascript">
 document.addEventListener("crestDocumentTranslationStart", () => console.log("Document translation started"));
 document.addEventListener("crestDocumentTranslationEnd", () => console.log("Document translation ended"));
 // e.detail.targets contains the array of MutationRecord objects that are being processed in the current run. For more information, see https://developer.mozilla.org/en-US/docs/Web/API/MutationRecord
 document.addEventListener("crestMutationTranslationStart", (e) => console.log(`Mutation translation started. Mutated records: ${e.detail.targets}`));
 document.addEventListener("crestMutationTranslationEnd", () => console.log("Mutation translation ended"));
 document.addEventListener("crestDictionaryLoadingStart", () => console.log("Dictionary download started"));
 document.addEventListener("crestDictionaryLoadingEnd", () => console.log("Dictionary download ended"));

 console.log("Event listeners ready...");
</script>

Index

Advanced capabilities

The Translation Proxy offers an ever-expanding host of advanced features with far-reaching impacts.

Increased Usage Alarm: the Proxy Application can be configured to send out an email alert if increased resource usage is detected on a project. Alert thresholds can be configured on a per-project basis, with respect to pageviews per second, added source words per second, or translated words per second, or any combination of these. Notification emails come with a cooldown timer: after an alert condition is triggered, no new alerts are sent for the specified time (defaults to 60 minutes, can be configured by the project owners, minimum of 15 minutes).

Pattern Matching: the Proxy Application can be given a regular expression to handle automatically generated text. Once the regular expression is entered and saved, all text matching the designated capture group will be considered translation invariant (i.e. the translation is exactly the same as the source). While existing source segments are not deleted, no new segments matching the capture groups will be added.

Freeze: the Proxy Application can be instructed to freeze the project pagelist or translation memory. If the pagelist is frozen, the Proxy Application will not add any more pages when crawling the site (although individual pages can still be forced into the database using the Add Pages dialog from the list); while freezing the translation memory will cause the Proxy Application to stop adding any new source segments, even if the page content changes between recrawls. Since the new segments will be left without translations, they will be allowed to bleed through into the translated site.

Note that attempting to activate translation memory freezing without activating pagelist freezing would result in an error, therefore it is not permitted: upon such an action, the Proxy Application will take corrective steps automatically, and enable pagelist freezing or disable translation memory freezing as needed to maintain consistency.

If desired, after freezing the page list, the Proxy Application can be configured to treat any further pages as “Excluded” by activating the “Handle unknown pages as externalized” option. This will cause the Proxy Application to bypass translation for any page that is not in the current pagelist, just as if it was manually excluded. Be aware that on a live site, this may result in an SEO penalty (due to duplicate content being detected by the crawler)!

Group pages: the Proxy Application can group automatically generated pages together, preventing new pages from being added, but not removing already added pages, and making the grouped pages share a single dictionary, necessitating translation of only one. The pages will be grouped according to the path rules specified in the textbox, one path per line, with a “*” as the wildcard character. This does not decrease the volume of pages that will be crawled, but it makes project maintenance easier.

JavaScript Translation: this field, available only on newly created projects, contains the capture group definitions used to extract attribute-value pairs from JavaScript files selected for translation/localization. After entering the capture parameters and re-crawling the site, the Proxy Application will display the selected JavaScript files as translatable pages in the pagelist, from where they can be selected for translation in the List View like regular pages, and any values for the selected attributes will be made available as translatable entries, which are treated identical to regular entries. Entering “html” (N. B. The switch is separated by a space!) after the path specification will result in the Proxy Application applying its HTML parser to the match instead of a plaintext parser, stripping out HTML markup and only offering the actual content for translation (otherwise, should the match contain markup, the translator must take care not to alter it, or risk breaking the translated site).

If a field of the JSON being parsed contains further JSON data in a stringified form ("key": "{\\"key\\":{\\"key\\":\\"value value value\\"}}"), the path can be passed to a recursive JSON translator by appending “json” to the path, then extending the path on the next line by adding “.json.”.

XPath Translation: the Proxy Application is able to translate XML (eXtensible Markup Language) files sent by the remote server, according to the XPath standard of specifying elements of the XML structure. Similar to JavaScript translation, entering the “html” switch will result in the HTML parser being applied, while no switch will parse the match as plaintext.

Mark multiple resources as translatable: using URL prefixes (N.B. this requires fully qualified URL prefixes, including protocol, host, and possibly path structures!), the Proxy Application can enforce dictionaries over multiple resources in a single rule. This is especially useful if the site under translation contains an API (especially CREST APIs) whose responses also require translation, and each endpoint is served on a different path; in this case, entering the root of the API here will automatically capture all responses from that path without having to individually mark them as translatable from the Resources menu.

Additional remote request headers: if the remote server requires certain headers to be present to serve legal responses, it will not be crawlable by default, as the crawler will not supply these. Entering the required headers here will result in them being appended to every request sent by the Proxy Application, including the crawler requests, letting you crawl the site as required.

JavaScript Rewriter: this automated tool will rewrite JavaScript files passing through the proxy, changing fully qualified URLs (beginning with “http://”, containing a top-level domain, followed by a “/”, and optionally any further URIs) to refer to the proxied domain instead of the original domain, thus preserving the integrity of the translation.

Ignored classes: if a certain class of elements are not ought to be translated, they can be entered here. Elements with these classes will be treated as if they had the <translate=no> attribute, and will be treated as translation-invariant.

Ignored IDs: similar to the “Ignored classes” option, this allows the treating of specific elements as translation-invariant, this time through HTML IDs.

Custom HTML attributes: some CMS-es may employ non-standard HTML attributes on elements to style the page or otherwise affect certain aspects of their operation. If some of these attributes contain translatable text, you can enter them into the “As text” field to instruct the Proxy Application to extract them. If they contain URLs that need to be mapped to the translated domain, you can use the “As link” field to instruct the Proxy Application to map those non-standard link elements as well.

On request, it is also possible to activate an HTML parser for certain attributes, should they contain HTML formatting in their values.

Tweaks

These features are small alterations to the by-and-large operation of the Proxy Application. Generally, activating them is not necessary for translation, but in some cases, strange server behavior or page structure may necessitate their use. They can be triggered on and off at will.

Retaining original DOCTYPEs: by default, the Proxy Application generates an HTML5 standards-compliant file to send to the client. If, for some reason, this causes problems due to the site relying on HTML4 standards for operation, some of which may be deprecated by HTML5, enabling this option will cause the Proxy Application to retain the original DOCTYPE declaration of the source page.

Determine document type by GET instead of HEAD: some servers may return different responses to the HEAD request we use to determine document type than the GET request used to download content. Enabling this option forces the Proxy Application to use GET requests for all operations, getting the correct content type from the server (as far as server-side configurations will allow).

Detect JavaScript content type: JavaScript may not be explicitly declared as such on the server, being sent to the client with misleading content types. This causes the Proxy Application to mis-identify such streams and not offer operations reserved for JS files. Enabling this option will force a deep check on each file sent to the client, to determine if they are indeed JavaScript code, regardless of their declared content type.

Download images through the proxy: this will instruct the Proxy Application to attempt to map all attributes to the proxied domain. This is especially useful if the images are served only after authentication.

Attempt to place tags according to punctuation when using TM-based pre-translation: if using a TM-based pre-translation, the Proxy Application may encounter segments where it cannot replace the XLIFF tags automatically, due to overly large differences between the contexts (possibly because of a changed site). If this option is enabled, the translator will try to replace the XLIFF tags according to their positions relative to punctuation marks in the segment. If successful, the TM entry’s confidence score will be increased by 0.1.

Translate excluded pages when viewing them in Preview mode (but still not in live serving mode): at times, it may be necessary to view excluded pages as if they were translated, in order to assess their layout, without actually making them available on the live site. Enabling this option allows just that, by propagating translations to the excluded pages if viewed in Preview mode, but keeping them untranslated in Live serving mode.

Translate javascript: attribute: the Proxy Application is capable of extracting and translating code from the onclick attribute of elements. This feature may be used when a site uses this attribute to store translatable content inlined into the attribute and requires this content to be translated. Currently we only process the onclick event’s contents, all other events in the javascript attribute will be ignored.

Detect and handle JSON-in-string responses, like "{\\"ResponseCode\\":\\"BadRequest\\"}: string-escaped JSON-format responses can be handled by activating this tweak. If active, the Proxy Application will first attempt to string-unescape the response before passing it to the JSON parser, in order to recreate its base form.

Make content in <script type="text/html"></script> translatable as a whole (don’t try to parse it as HTML): script blocks may contain template data requiring translation, which is often signified by the text/html content type (instead of the more usual application major type). In such cases, HTML parsing can be undesirable, and can be bypassed by activating this option.

Send a canonical link http header pointing to the original page on externalized pages: the Proxy Application can insert a Link header into externalized pages, in order to avoid the SEO penalty associated with duplicate content. This header will point to the original address, and have rel=Canonical added, to designate the relationship.

Trigger classes

Translation Proxy has a number of special classes, in addition to the user-specified Ignore class es. These must be added to the source content by the client, and triggers special behavior in the proxy either when the content is extracted or during the actual proxying process.

 	Class	Applicable to	Effect

 	__ptNoRemap
	a href
	Affected links are left untouched by the proxy, their destinations are not remapped into relative URLs.

 	EL_swap
__ptSwap

 Caching

Caching

The Translation Proxy operates several caching mechanisms, saving either the source or the target content. All of these are tied to individual project settings, and are not active by default.

Basic separation

	Target Cache: the Target cache is active on the live serving domain, and caches the output of the Translator, along with the hash of the source content and the percentage of completed translations. It is used to accelerate page serving time by skipping translation entirely: if the Target cache is on, the entity is loaded at the start of translation, and the source content hash is compared to the hash stored by the entity. If matching, the contents of the entity are written into the response and the Translator returns without processing the source content further. If the hashes do not match, translation proceeds as usual, and the resulting target content is written back out into the entity, replacing the previous contents.The Target cache is built or overwritten every time a page is loaded through the proxy on the live serving domain, with a few notable exceptions: the cache is not overwritten if the content served matches the content received (i.e. no processing was done on it), nor are entities larger than the hard-coded maximum entity size (960kb) saved. Furthermore, if a site changes its contents too fast (there are too many cache misses, i.e. the cached content differs from the actual), the Proxy will stop caching the given entity to prevent overusing the database. Should this happen, caches must be cleared manually to restore normal operation and reset the cache miss limit.Since the Target Cache will skip document translation, it will prevent newly-written translations or page modifiers from appearing on the live site until cleared!

	Keep Cache Serving Strategy: the Keep Cache option alters the Target Cache’s operation by forcing the Translator to always use the cache, if an entity can be loaded, regardless of the source content hashes. With the option active, the cache is automatically overwritten if the translation results in an increase in the translation ratio, but once a drop is detected, the Translator begins to serve the cached entity, regardless of changes. This “freezes” the target content in place and prevents any new source content from appearing on the target site.

	Source Cache: the Source cache option records the entire response from the remote server, and forwards it to the client if the path prefixes entered in the text field match (an empty field means that the cached content is served regardless of path), and the page is not externalized. Since this only caches the remote server’s response, it is only capable of providing a smaller increase in serving speed (since processing still needs to be done on the response to create the translated page), it can be used to speed up loading of sites served from overloaded or outdated servers, and can also be used to mask changes on the remote server by supplying the cached response to the Proxy.Unlike the Target cache, this cache is only built during crawling, and only if the appropriate options are selected (Build source cache checkbox in the Scan dialog or the Add Pages dialog). Furthermore, pages in question must not be excluded from the crawl to download and cache them, and content from third-party servers (such as content Delivery Networks (CDNs)) are not retained in the cache. Lastly, the same hard-coded limitation of 960kb applies here as well. On the other hand, selecting the “Preserve & use existing cache” option in the Scan dialog instructs the Proxy to re-use the existing Source cache instead of renewing and overwriting it. When this option is checked, it becomes possible to use the Source cache as a version of the staging server, by continuously supplying the same remote server response to mask any changes done to the original site before a cache is rebuilt.

The cache information for each page can be queried individually by clicking the Cache button on the page’s row. This displays a dialog detailing the currently active caches, when they were generated, and allows the project owner to clear each cache separately for each page (useful for hunting down issues when the translated page doesn’t display a change recently made on the original).

Multicache

With the 2015 December rollout of the Multicache feature, the Proxy Application has gained the ability to use different caches in different proxy modes. There exists a default cache for both the Target and the Source cache, and the project owner can create up to five named caches for Source and Target modes respectively. These caches can be renamed at will, and their contents purged, but cannot be deleted.

Each proxy mode can be assigned a different cache, and requests in that mode will be routed to the cache first. If an entity is not found in the Datastore, the request falls through to the source server, and the live content found there will be used.During a crawl, the source cache into which data will be written can be selected on the crawl limit dialog. The target cache, however, will only build itself on a published project, on the live domain!

 Collaboration

Collaboration

The Translation Proxy offers a multiuser environment for editing your translations. Thanks to Google’s infrastructure, any number of users can work on a single project simultaneously. These users can be assigned specific roles, and with these roles, certain powers that limit their access to the Proxy Application.

The translation workflow in the Proxy Application is split into a maximum of four steps:

	Translation: marked by a T and the color yellow

	Proofreading: marked by a P and the color cyan

	Second Proofreading: marked by a Q and the color violet

	Client approval: marked by the letter C and the color aqua

Any user may be assigned any combination of these steps, useful for restricting access to entries in the Workbench.

Every project has an owner, who has unlimited powers over the project: the owner may add or remove anyone on the project, edit any entry in any language, including adding new languages, and change any setting, including the advanced ones. There can only be one owner on a project, but owners may renounce ownership, designating another user and setting their own privileges.

Linguists are designated using the Simplified Dashboard feature: this limits the user’s access to the dashboard and the Content menu, only permitting segment editing, and only in their designated language and phase. Linguists can also receive notification emails on project updates, and may be given the power to import/export XLIFF files.

Contributors are the default users, capable of editing any entry in their selected language and workflow step, but are prevented from doing anything else on the project. They may receive notification emails and project update emails, but they may not edit their features, nor invite anyone else, nor access any of the advanced settings.

Customers are a special user class, who are given the ability to manage source segments. By default, the Proxy Application marks all newly discovered segments as “Approved” (as opposed to “Pending” or “Excluded”), which means they are available for translation right away. The setting can be changed under the Advanced Settings menu so newly discovered segments are marked differently, and are not available for translation right away. These pending segments can be managed by the Customer role to be approved or excluded entirely, deciding whether or not they are to be translated. Note that the Customer needs access to at least one target language and a workflow step to be able to enter the Workbench to select and modify the pending segments!

Project Managers are designated by their power to invite others onto the project. Other features and roles can be added as well, but care must be exercised not to include other, conflicting roles, which could re-restrict their access.

Advanced Project Managers are designated by the eponymous feature. They are given the power to edit languages, as well as any entry in the project, and editing most setting, up to, and including, the URL inclusion-exclusion rules. However, they cannot change segmentation settings, publishing settings, and certain advanced settings.

Admins are designated by their Backup Owner role. Their powers equal that of project owners, being able to change any setting and entry, adding or removing users, and modifying the language settings.

 Content scanning

Content scanning

Scanning extracts content from the pages in the allowed range by attempting to read it into the database, using up the pageWrite quota for legacy accounts, and deducting €2 from the balance of credit-based accounts for every thousand source words. The scanning crawler obeys the same inclusion-exclusion rules as the discovery crawler, but will attempt to copy the page’s content into Google’s Datastore. If the page can be copied successfully, the Proxy Application will process the content once all selected pages have been extracted.

If a link serves content that is not textual (usually HTML), it will be added to the Resources menu instead. This enables the localization of various other types of content, including, but not limited to, inline images, CSS files, and downloadables.

Once all the selected pages have been extracted, the Proxy Application analyzes the extracted content, mapping out the textual structure and searching for repetitions source segments. These repetitions are factored into the final word count. Repetitions of the same source segment are then linked, so that modification of one is replicated across all the other instances of the same segment.

Scanning may be limited to assessing only resources (non-HTML entities) or pages using the checkboxes in the dialog. Additionally, if page or dictionary [freezing] is enabled, the appropriate warning will be displayed by the dialog before crawling is started.

Additionally, Scanning may be used to build up the [Source cache] by ticking the option in the dialog, or can be instructed to use the source cache’s contents (if it exists) instead of the server’s actual response.

Once a project is scanned, there may be suspicions of content inserted by JavaScript (i.e. untranslated content appears that is not available on the Workbench for translation). In such cases, it is advisable to run the Proxy Application’s JavaScript-generated content check. This opens each page in turn, checking for JavaScript-inserted content, which may take a long time. Once the scan runs its course, an email is sent to the initiator, with the JS-generated content, as well as the source file (that needs to be added from the Resources list to translate) and suggestions for the search paths that need to be entered into the JavaScript search on the Advanced Settings menu to capture the content for translation.

 The Crawler

The Crawler

Overview

The Translation Proxy employs a highly configurable crawler algorithm to map out sites, establish word counts, and extract content. It does so by requesting pages from the remote server, traversing the deserialized DOM scanning for link elements in the markup (the <a> and <src> elements), and attempting to follow these. Any page that can be verified to exist (by the server returning the appropriate HTTP status, usually a HTTP200, in response to a HEAD request) is added to the list of pages with the appropriate status, while those that are known to exist only by the existence of a link are marked “Unvisited”. If the server returns anything other than a success message, the status code is displayed and the page remains “Unvisited”. This is most commonly seen with HTTP301 (Redirection) or HTTP404 (Not Found) errors.

The crawler operates on an unprocessed DOM, generated from the HTML source. JavaScript code is not executed (but their contents may be parsed if the project is configured to do so), nor is any content depending on user interaction discovered. Unpaired HTML elements are normalized, and invalid elements are discarded.

Requests are sent via Google’s URLFetch service. Therefore, requests will come from Google-controlled IPs (unless specific configuration is applied). The user-agent will always contain the string “Appengine Google” due to Google’s enforcement of this header - this may cause undesired behavior in certain caching/access-control systems, such as WPEngine’s anti-bot algorithm.If required, all proxy requests (crawler and page serving) may be routed through a fixed IP address outside of Google’s IP range. This may be used to circumvent access control restrictions.

Modes of operation

The crawler distinguishes two main modes of operation, based on whether content is being extracted from the target site and stored as SourceEntry entities: if content is not being stored, the crawl is deemed a “dry” crawl (named Discovery on the UI), otherwise, it is “non-dry” (named Content Scan).When a dry crawl is executed, content is assessed in-memory and word counts are generated based on the current state of the project - the statistics table is re-initialized for each run, and nothing carries over to subsequent runs.During a non-dry crawl, the text content of DOM nodes and attributes (based on project configuration) is extracted and stored in the Datastore as SourceEntry entities. Content is then analyzed based on the available dictionary, meaning word counts reflect the statistics and state of the project since its creation - pre-existing content, possibly no longer on the page, is also assessed and factored into repetitions and unique word counts.

Both crawl types may be further subdivided based on scope: it is possible to start the crawl by restricting it to a predefined list of URLs or allowing it to traverse the site as directed by internal links.When the crawler operates on a known list of pages (termed the “Add Pages” function on the UI), page number limitations are ignored and pages referenced by the scanned items are not added to the project, unless explicitly specified when starting the crawl.When the crawler traverses the site by following internal links, by default, it does so by sending plain HEAD or GET requests to the remote server. Based on project and crawl configuration, it is possible to include custom headers or cookie data in the crawl requests. Crawl depth limits and page exclusions/skipping may be configured on a per-crawl basis (these options are not saved by design, though their individual configurations persist across sessions) before the crawl is created. Once the crawl begins, the CrawlJob entity associated with the crawl creates a snapshot of the current path prefixes on the project, as well as other crawl data - once the crawl begins, the options are committed, and can not be changed without stopping and re-starting the crawl!

Exclusion rules may be added at this stage (or any stage), which prevent the crawler from visiting and crawling certain pages or paths. Links pointing into excluded ranges are still discovered, but their destinations are marked “Unvisited”, and further links in the chain are not assessed.

Discovery may be limited to assessing only resources (non-HTML entities) or pages using the checkboxes in the dialog. Additionally, if page or dictionary freezing is enabled, the appropriate warning will be displayed by the dialog before crawling is started.

 URL List manipulation

URL List manipulation

By default, the Proxy Application crawls every single URL in the target domain. For certain sites, this can mean tens of thousands of individual pages if the crawler is not restricted by page number. To avoid premature depletion of quotas, a path restriction system was implemented, allowing users to limit the crawler to certain paths on the site.

If the site’s structure is known in advance, it is possible to specify these path prefixes before Discovery is initiated. If the structure is unknown, a restricted Discovery scan will create a rudimentary map of the site’s structure, providing a basis for manipulating the URL lists.

Restriction rules may have three forms:

	Inclusion rules: the crawler is restricted to the specified path prefix, and everything outside that is ignored (excluded)

	Exclusion rules: everything with the given prefix is ignored, but everything else is included in the scan

	Manual exclusion (“cherry-picking”): only the selected page is excluded from content extraction

These rules can be used in any combination, and without limit. The only illegal rule is including the root directory (“/”), which is equivalent to no rules being specified, therefore this is not permitted, and the Proxy Application will not save such an inclusion rule.

The path prefixes can be entered after opening the Rules editor. Prefixes must be entered starting with the domain’s root (“/”), and should ideally end on a / as well. Also note that the rules you enter are prefixes only, any path beginning with the strings you set will match them, and setting post-fixes (rules matching the end of the path) are not possible.

It is also possible to force a set of pages into the Proxy Application’s scope, by using the appropriate function in the page list. Depending on the list is called from, the resulting dialog will either only discover the URLs pasted, or it will extract content right away and process it for translation.

The same dialog can be used to crawl only the publicly accessible parts of the site by giving the Proxy Application the link to the site’s sitemap.xml[^1] file. Once the link is entered, the Proxy Application will parse the XML, and crawl the site accordingly, making sure that only the publicly accessible pages are crawled and extracted.

 Project generation

Project generation

Basic project creation

While the Proxy Application is capable of processing almost any format of domains, it will automatically process the URL given to use the TLD and any subdomains specified. Additional path structures will be stripped from the initial URL, and must be added back as pages (either by adding via URL or by using the discovery function).

At project creation, the Proxy Application will attempt to determine the canonical hostname. If successful, this host is used automatically as the project’s root. Any path component specified in the domain field will be added as an “Unvisited” page.
If the initial HEAD request fails (socket timeout or more than five redirections), the Proxy Application will consider the domain invalid, and the project will not be created. This behavior can be overridden at creation-time by opening the Advanced Options and unselecting the “Check for redirections” checkbox - if done, the Proxy Application will create the Project entity without any initial pages, which must be added by hand using the Add pages function.

Advanced project options

Certain attributes of the Project entity can be pre-loaded at creation:

	Exclusion prefixes

	Prefix masks

	Custom SRX file (can be uploaded only at creation time!)

 Publishing

Publishing

To be able to serve the translations, the Proxy Application needs the serving domain mapped into the Google AppEngine system. Due to Google’s update of their domain mapping architecture, it is now possible to push domains into the system by the simple insertion of three CNAME records into the DNS settings for that given domain.

When publishing the translated site, it is highly recommended to have the domain provider/registrar’s control panel already open, and the DNS settings loaded up. In the Publish Website menu, after selecting the language to be published, and entering the desired serving domain, the key-value pairs in the table below the inputs will change accordingly. These values need to be entered into the DNS settings for the domain, after which propagation may take up to 24 hours, depending on the domain provider’s configuration. Once the new records have propagated (after a recommended wait of 24 hours), pressing the “Verify” button will query the appropriate addresses and check the returned DNS records. If they match the generated values, the Proxy Application sets the appropriate flag on the project, publishing it instantly.

 Resources

Resources

The Translation Proxy is also capable of localizing binary resources (images, CSS and JS files, PDFs, etc.) found on pages. Such resources are identified during content extraction (any file that is not HTML by content will be treated as a resource), and are placed into the Resources menu under Content. Here they can be selected for replacement, with the localized version uploaded by language.

Additionally, .js files may be added to the translatable pages list from here. This enables the localization of JavaScripts. In order to take advantage of this feature, the file must first be selected for placing into the page list, after which one or more search terms must be entered in the Advanced settings menu. These search terms restrict the Proxy Application to extracting certain variable names during the subsequent content extraction scan. After this, the .js file will be made available as a translatable page, with the variable values being entered into the translation memory. These values can be replaced like any translatable text, after which the file is recompiled in real-time with the new values, and loaded along with the page.

The feature depends heavily on the JavaScript being structured properly and having properly named variables and data structures which can be interpreted and whose values can be replaced to achieve changes in the loaded page. Also, careless modification of the variable values can have unknown consequences on the page’s operation and may cause the site to stop working altogether if a vital value is modified improperly.

 The Workbench

The Workbench

The Workbench is the online editing view of the Proxy Application. It can be used to edit segments, as well as to execute mass operations on large numbers of segments during the proofreading and the publishing phases. The main view of the Workbench is the List View, a simple two-up listing of all the content on the page, the secondary is the Highlight View, which renders the page as-is and allows in-context editing of its contents

The Workbench is opened using the Pages list: each line in the list reveals a toolbar when hovered over, including the “Translate in Workbench” button, which will load the Workbench for the desired page. Once opened, the Workbench can be navigated to other pages using the Page dropdown in the upper left area. The Page dropdown can be searched to locate specific pages. Also in the header is the target language selector, allowing the user to switch to other target languages, if more than one exists on the project. The page can also be previewed using the Eye Icon.

The List View

The List View is a simple two-up editor to edit translations without the requirement of creating an XLIFF-export. It also allows various filtering options and mass operations, as well as pre-translations and translation clearing.

The user can execute Bulk Operations on the List View’s contents. Bulk Operations include mass-confirming or unconfirming segments, moving them between exclusion states, or publishing them as one.

In the List View, the segment list may be filtered or searched along multiple criteria. The search bar accepts various modifier tokens, which are listed in the placeholder.

	A simply entered search term will execute a text search in both the source and target content

	Prefacing the term with source: or target: will restrict the search to the designated content

	Encapsulating the term into “quotation marks” will execute a case-sensitive search for the exact term entered

	Entering a /pair of forward slashes/ instructs the Workbench to treat their contents as a regular expression, allowing regex searches. Also, clicking the magnifying glass in this mode allows the user to delete source segments matching the pattern

	Prefacing the term with a ~ will stem the search term and use Google’s Search API to execute the search in order to return more results.

Also available in the list view are the segment filters. These filters allow the user to narrow down the segments according to various criteria, from the presence or absence of comments through presence of target content to the level of TM-based pre-translation confidence. Additionally, filtering is also possible based on the source location of the segment in the original document. The document path filter section contains a pre-loaded SEO-preset (activated by clicking the link), which only retains the most relevant elements for SEO.

From the same toolbar, the user can either remove the translations of all segments on the page (CAUTION: this erasure does not obey the currently active filtering settings, all segments will be erased on the page!), or conduct automated pre-translations by applying a TM assigned to the project or using a machine translation engine (including a quick pseudo-translation that reverses the content).

The right sidebar contains the suggestions for the currently selected segment, coming from either any assigned TMs on the project or active machine translation engines; and the segment history, including the segment creation date as the very first item. Clicking any of the suggestions will enter its contents into the target editor, preparing the translation for submission.

Also on this toolbar, the user can select a Work Package to filter the contents (or create one). This allows you to view the contents for a given work package, a “snapshot” of the site at a given time. If the user is assigned more than one workflow role in the [Sharing Settings], they can be switched here.

In the target editor, apart from entering translations manually, the user has the option of copying the source content verbatim, copying only the tags, or resetting the segment to mark it as “missing its translation”. Further, the editor can be configured to retain manually inserted line breaks using the button on its right. Any XLIFF tags that are displayed in the editor can be drag-and-dropped to their rightful places, useful for “fixing” 98% or lower TM-matches that have the tags in the wrong places.

The Highlight View

The Highlight View is the secondary view mode of the Workbench. It renders the page fully and allows in-context verification and modification of the target content. While filtering options work in the Highlight View as well, they do not produce visible results.

Some sites may interfere with the Highlight View’s operation via their internal JavaScript and render it inoperable. In some cases, it is possible to inject custom JavaScript into the page to override any defense mechanisms that may be attempting to redirect the page or hide its contents, in other cases, it may take prohibitive amounts of time and resources to achieve this.

Regardless of the Highlight View’s state, the list view, as a separate component, remains operational in all cases.

_static/up-pressed.png

_static/up.png

_images/appengine-architecture.png
Front End and App Server:
The technologies behind the scalability
and reliability

Google Cloud Platform

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Technical Reference

 		
 Architecture

 		
 Modularity

 		
 Underlying technologies

 		
 Request Handling

 		
 Classification of Content

 		
 Text content

 		
 Resource content

 		
 Translation Memo